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A S Y M P T O T I C  B E H A V I O R  OF T H E  F A R  R E G I O N  OF T U R B U L E N T  W A K E  VORTICES 

B. A. Lugovtsov UDC 532.516 

An approximate mathematical model, formulation of the problem, and its approximate solution 
are proposed for the far region of a turbulent vortex wake past a moving body, where the departure 
of the horizontal velocity component from the uniform flow is slight. It is assumed that the 
single important parameter that defines the main flow characteristics in this region is the vortex 
momentum per unit length produced in the fluid by the lift equal to the weight of the moving 
body uncompensated by the buoyancy force. Thus, the flow is self-similar, and the self-similarity 
law determines the intensity, shape, and location of vortex lines as functions of the downstream 
distance with accuracy up to a constant factor, which cannot be determined theoretically and 
should be obtained by comparison of theory with experiment. A boundary-value problem is 
formulated to determine the flow structure of vortex lines ( vorticity distribution). A solution of 
the problem is obtained numerically in the limit of "vanishing turbulent viscosity." The variation 
in the maximum velocity of a vortex line with distance, determined by self-similarity, is in 
agreement with available experimental data. 

I n t r o d u c t i o n .  The problem of wake vortices has become especially pressing with the appearance of 
heavy airplane, behind which intense vortex lines extend over several kilometers and are a serious hazard to 
small airplanes falling in the region of these vortices [1]. 

In this connection, it is.of interest to study the far region in a vortex wake, i.e., the region where the 
ordinary momentum-free wake (the drag force is compensated by the engine thrust) is no longer significant 
and, at the same time, the phenomena caused by the instability and breakup of a vortex pair into structures 
such as vortex rings, etc., are not yet manifested. 

Experimental studies and theoretical descriptions of this phenomenon involve solving complex problems 
of the dynamics of concentrated vortices. Under laboratory conditions, measurements in the far region 
are impossible because of the limited dimensions of experimental installations and the significant effect of 
the wake due to the body drag (under real conditions, it is compensated by engine operation). Full-scale 
experiments are technically difficult and axe complicated by many additional factors: atmospheric turbulence, 
wind, stratification of the atmosphere, etc. These circumstances lead to a wide spread of measurement results 
and, in some cases, to contradictory results. 

Under real conditions, the motion in such vortices is turbulent, as confirmed in experiments. The lack 
of a reliable, serviceable mathematical model for describing turbulent fluid flow hinders the development of 
an adequate mathematical model and a fairly comprehensive theoretical description of this phenomenon. 

The complexity of the problem is responsible for the considerable simplifications used in analytical 
studies. In a number of papers, one vortex line is considered, the flow in its vicinity is considered axisymmetric, 
and the effect of the second vortex line is ignored [2, 3]. This approach is justified on the initial segment after 
roll-up of the vortex wake shed from the wing (lifting surface) and as long as the variation in the total 
circulation due to turbulent diffusion of vorticity is negligible. It is clear that at a certain distance, the 
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influence of vortices on each other becomes significant, the flow in the vicinity of each vortex ceases to be 
axisymmetric, and circulation decreases with time. 

The approach used in the given paper is similar to the one used previously in studies of a turbulent 
vortex ring and a vortex pair (a plane analog of a vortex ring) [4-6]. The boundary-value problem for 
determining the flow structure considered in the present paper coincides with the corresponding problem 
for a plane analog of a vortex ring. It is assumed that there is no stratification of the atmosphere. 

1. E q u a t i o n s  of  M o t i o n .  The equations for the mean flow describing the steady turbulent flow past 
a moving body in Cartesian coordinates in the conventional notation have the form 

Ou Ou OH Ou 10p  Oax~ &r~,: Oo',~y 
w 0 ~ + ~ + H ~ + ~ + _  p o~ - - -+o~  ~ +-- 'ou 

Ov Ov Ov Ov 10p Oay~  Oayz O~ryy 
W~ + ~ + ~ '~  + " N  + -: --o~ = Oz + ~ + ~'oy (1) 

Ow Ow Ow 10p  Oct.. Ocr.~ Ocr.y. 
wo -~z + W~z + U~x Oy p Oz Oz ~ Oy ' + v ~ +  - - - +  + 

Ou Ov Ow 
0 - 7 + N + ~  =0, (2) 

where W0 is the velocity of the flow moving along the z axis from infinity, vz = W0 + w, and aik is the tensor 
of viscous and turbulent Reynolds stresses. The z axis is directed along the gravity force. 

At rather large distances downstream from the moving body, the velocity component w of the 
disturbance introduced into the flow is small compared to W0, and the rate of change of the quantities with 
distance along the z axis is small, so that O/Oz ~ ~(O/Ox) ,~, e(O/Oy) (e << 1), but Wo(O/Oz) ~ u(O/Ox), 
v(O/Oy). Therefore, as a first approximation, the terms containing the derivatives with respect to z can be 
dropped, except for the first terms in Eqs. (1). It is convenient to introduce a fictitious "time" - -  the quantity 
,- = z/Wo. 

Below, we describe the turbulent flow using a simple model with a turbulent viscosity coefficient 
dependent on the "time" r ,  so that,  ignoring molecular viscosity, we can write the stress tensor as 

1 , 2 r0Hi 0Hk~ 
~k =--~(~)  ~,~ + ~,(-)(,y22~ + O=~J' (3) 

where u~ are the pulsation velocity components and (ul, u2, us) = (u, v, w). 
With allowance for (3), Eqs. (1) and (2), as a first approximation, are written as 

0~ 0u 0H 10p' (o~H 0~u~ 
0-7 + H ~  + ~ N  + - - -  = ~,(,) + 

Ov Ov Ov 10p' 102v 02v ~ 
0 - 7 + H ~ + V N +  p 0y - "*(")(,?-~ + 0y~J' (4) 

Ou Ov 
o - 7 + N = o ,  

where p' = p + (1/3)p(u~) 2 is the modified pressure. 
From Eqs. (3) and (4) it follows that  as a first approximation, the velocity components perpendicular 

to the free stream does not depend on the longitudinal velocity perturbation. After u, v, and pt are obtained, 
w is determined from the equation 

o,- + H ~  "~ Oz = "*(")~,0=~ + -NJ]" (5) 

From Eq. (5), the longitudinal velocity perturbation can be determined as is done in [7]. In the present 
paper, this problem is not considered. 
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2. Se l f -S imi la r i ty .  Let the motion of a body at constant speed be maintained by engine operation. 
Behind the body, a m o m e n t u m  free wake forms (the total horizontal component  of the forces acting on the 
body is equal to zero) in which the horizontal velocity component  w decays rather rapidly. Below, it is assumed 
that  at a certain distance downstream from the moving body  there is a region in which the vortex wake related 
to the lift plays a leading role. 

Let the weight of the  moving body P be balanced by the lift. For compensation of the weight of the 
body, the fluid should be imparted momen tum per unit t ime J = P .  In t ime t, the body travels distance 
z = Wot, where W0 is the  speed of the body, and, hence, the m o m e n t u m  per unit  length of the distance 
traveled is Jo = P / W o  or the  vortex momen tum is 2j0 = Jo/p. Here p is the density of the fluid, which is 
considered incompressible and homogeneous, and, with allowance for the flow ant isymmetry about the plane 
y = 0, the vortex m o m e n t u m  is given by the formula 

o o  o ~  

This quanti ty is an integral of motion of system (4), and, thus, each section z = const contains constant 
( independent  of the "t ime" r )  momentum 2j0. The dimension of the vortex m o m e n t u m  is [j0] = L a / T .  If, 
with allowance for the  turbulent  pattern of the wake flow, the kinematic viscosity of the fluid is ignored, 
the vortex momentum is the  only dimensional constant tha t  should determine all flow characteristics. Under 
this assumption, the problem considered becomes equivalent to the problem of motion of a planar analog of 
a vortex ring u a vortex pair, produced in a fluid by introducing a vortex m o m e n t u m  in an infinitesimal 
fluid volume [4]. In this case, the quantity r = z /Wo acts as the time. According to this, from dimensional 
considerations, we obtain the shape and location of the vortex lines: 

x = xo(P/2pW2o)l/3z 1D, y = yo(P/2pW~)a/3z  1/3. (6) 

Here x0 and y0 are certain constants, determined by the position of the maximum of vorticity in the plane 
x, y for a vortex lines for which y > 0. If the flow pat tern in the plane x, y is projected for different values 
of z onto the plane z = 0, from (6) we obtain a vortex pair moving with the "time" v according to the 
above-mentioned analogy. In this plane, the trajectories of the projections of the points corresponding to each 
of the vortex lines are straight  lines that issue from a certain virtual origin and pass (approximately) through 
the tips of the lifting wings, so that  they form angle 2/3. We set a = tan/3 = yo/xo. This quantity cannot 
be found (in the present formulation) theoretically and is related, as will be clear below, to the turbulent  
viscosity coefficient. By analogy with vortex rings, one might  expect that  a is a small quanti ty (~10-1-10 -2). 
Let 2b be the wing span (the span of the lifting surface). Self-similarity implies that  in the projection onto 
the plane z = zs, where the  wing is located (z = 0 corresponds to the  position of the virtual origin of the 
vortex lines), the distance between the vortex lines varies as y = b + a(x  - xs), where xs is the coordinate 
of the lifting surface (wing). 

According to self-similarity, the velocity components perpendicular to the free stream and the modified 
pressure are defined by the  relations 

u,  v .., w o C P I 2 p W 2 o ) l / 3 1 z 2 / 3 ,  p' , - ,  p W 2 ( p / 2 p W 2 ) 2 / 3 / z  4D. (7) 

From (5) and (7) it follows that  w ,~ Wo(P/2pW2o)2/3/z 4/3. Downstream, the intensity of the vortex 
lines varies as r = Wo(P/2pW2o)2/3/z  1D. 

The turbulent viscosity coefficient according to self-similarity is determined by the equality 

= xJ  2D (el2pW2o) 2/a 
u, ..r1/3 = )~Wo z113 , (8) 

where )~ is a dimensionless constant,  which remains a free parameter  in the formulation considered. 
The  self-similar variables x I and yl are given by the equalities 

s x x yl _- Y _- Y 
x = ( jo /Wo) l /3z l /3  - j~/3rl /~ , ( jo /Wo) l /3zU 3 j~/3r l /3 .  (9) 
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3. F o r m u l a t i o n  of  t he  B o u n d a r y - V a l u e  P r o b l e m .  We convert from the required functions u and 
v to the new functions - -  vorticity w = (W)z (w = rot u) and the stream function r 

0r 0r 
Ox' Oy" 

Then, with allowance for (8), taking into account that, by virtue of self-similarity and (9), 

g l / 3  
1 Jo ,]?(x~, 

we obtain the following boundary-value problem (the primes are omitted). It is required to find a solution of 
the equations 

. z'a2w VO2w'~ 1 aw 1 VOw Ow VOr vOw vOr 
-~x 4" "~ y -~y vOx vOy vOy vOx' + vOy j + w =  . . . .  (lO) 

02r 02r 
VOx 2 + ~y2  = --w, ( i i )  

subject to the boundary conditions 

w=~b-'=O for y : 0 ;  w---~0, ~b---~0 for x2-by  2 ~ o~ (12) 

and the following normalization condition, which follows from the law of conservation of vortex momentum: 
o o  oo  

= 1 (131 
- - o o  0 

The problem formulated above allows one to determine the vorticity-distribution pattern in the vortex 
pair and the flow produced by it. In this formulation, the entire flow is determined by one quantity - -  the 
coefficient A. The quantity a is uniquely related to the latter and can be determined from experiments. This 
relation is given by a = yo(A)/xo(A), where x0(A) and y0(A) are the coordinates that determine the position 
of the maximum w(x, y) in the plane (x, y). 

Actually, the flow produced by the vortex pair generated by flow past a moving body is not self-similar. 
In the immediate proximity of the body, the vortex pair pattern depends on the details of the body shape. 
However, as in the case of vortex rings [4-6], one might expect that at some distance away from the body, 
the pattern of the vortex pair and the flow produced by it acquires a certain universal nature. The fluid flow 
and the vortex pair pattern in this region do not depend on the details of the shape of the moving body. 
Full information on the detailed mechanism of formation of the vortex pair in the flow past the body at long 
distances is contained in just one quantity - -  the coefficient a. After the vortex pair travels a distance of about 
several wing spans along the y coordinate, the action of turbulent viscosity leads to a self-similar vorticity 
distribution, which depends on the conditions of formation of the vortex pair on the initial segment only via 
the constant a. 

4. A p p r o x i m a t e  Solut ion .  An exact analytical solution of the formulated problem has not been 
obtained. For large values of A, the existence and uniqueness of a solution is rigorously proved by Pukhnachev 
[8]. It is of interest to compare the solutions of the problem for small values of A with experiments [this will 
be clear when we obtain the relationship (approximate) between A and a]. According to this, the coefficient A 
of the high-order derivatives entering the equations is a small parameter. This complicates the problem since 
flow calculations by numerical methods require (in the present problem) a fairly accurate determination of 
the positions of the vorticity extrema in the plane (x, y). In this connection, it is necessary and useful to study 
a model problem that possesses the main properties of the exact problem and, at the same time, is simple so 
that the solution can be brought to completion in analytic form. 

Instead of system (10), (11), we consider the system 

1" 1 
+ +  ywy + w = r u0)wx; (14) 
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A~, = --w (15) 
with the same boundary conditions (12) and normalization (13) as for system (10), (11). Here x0 and y0 are 
the coordinates of the point  at which w(x, y) reaches a maximum (by virtue of the apparent oddness of the 
solution for y, it suffices to consider only the upper half plane). 

The model system (14), (15) can be regarded as a crude approximation of the  exact system (10), (11). 
Equation (14) differs little from the corresponding Eq. (10) in the vicinity of the point  (x0, y0) of the maximum 
w(x, y) because at this point,  r y0) "~ a~by(x0, y0) according to self-similarity, and the second term on the 
right side of (10) can be ignored compared to the first since a is small, as indicated above. At large distances 
from the point (x0, y0), as x 2 + y2 ~ oo the linear (left-hand) side, which is the  same in both equations, 
becomes principal. According to this, one might expect tha t  the solution of the  model  problem would give 
even the order of magni tude  of the position of and value of the maximum w(x, y). 

The model problem is nonlinear as is the exact problem since the coefficient at w, on the right side of 
(14) is a functional of w(x, y). 

A solution of the model  problem can be obtained as follows. We make the  substitution of variables: 

1 1 
= x/ .~[x - 3r y0)], r / =  ~ y ,  w(~, 7/) = exp[-(1/2)(~ 2 + r/2)lZ(~, ~/). (16) 

As a result of the subst i tut ion (16), from Eq. (14) we obtain the following equation for Z(~, r/): 

Z ~  + Z , ,  + (4 - ~2 _ r/2)Z = 0. (17) 

Equation (17) admits  separation of variables. Assuming that Z = U(~)V07), for U and V we obtain 
the equations 

U" - ~2U = - ( C  + 4)U; (18) 

V" - ~12V = CV, (19) 

where C is the constant of separation, with the boundary  conditions 

V ' ~  0 as l~l --' r162 V ---, 0 as 1'71 "" ~ .  (20) 

In addition, by virtue of the  ant isymmetry condition, the following condition should be satisfied: 

V(~) = V ( - ~ ) .  (21) 

Thus, we have two eigenvalue problems related to one another by the constant  of separation C. The 
eigenvalue problem for equations of this type has been adequately studied and its solution is known. Solutions 
of Eqs. (18) and (19) subject  to the boundary conditions (20) and the ant i symmetry  condition (21) exist only 
if 

C + 4 = 2 n + 1  (n = 0,1, 2, . . .); - C - - 2 m + l  (m = 0,1, 2, . . .). (22) 

From (22) it follows that  n = 0 and m = 1 or n = 1 and m = 0. The an t i symmetry  condition for '7 leaves 
just one possibility n = 0 and m = 1. The  corresponding solution has the form U(~) = Aa exp[-(1/2)~2], 
V(r}) = a2~?exp[-(1/2)?2].  Hence, Z(~,rl) = ar lexp[-(1/2)(~2 + ~2)], where a is an arbitrary constant 
determined by the normalization (13) and is equal to 

A = 9xAa/2. (23) 

Equation (15) defines #2(x,y) via the already known w(x, y). Taking into account that  the stream function 
must  be equal to zero at infinity, we have 

OO 1 z,)2 
r =-4--;f X 

- - O O  
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However, the function r is easier to calculate as follows. In the variables ( and r/, Eq. (15) has the form 

r162 + r = -6AA'1 exp (_p2), (24) 

where p2 __ ~2 + '12. We seek r '1) in the form r 71) = 'if(P). Subst i tut ing this into (24), we obtain the 
following ordinary differential equation of the second order for f(p): 

p f, 
P 

The general solution of this equation is 

C2 3 hA 
f ( p )  -~-- C1 -[- p2 2 p2 exp (_p2). 

The arbitrary constants are determined from the condition of equality to zero at infinity and limitedness at 
zero. As a result, we have 

3 XA(1 _ exp (_p2))" 
p2 

Reverting to the variables x and y, determining the values of z0 and y0, and taking (23) into account, we 
ultimately obtain the solution 

6A 

where 

1 0.0686 
x0 = --:7(2 exp ( - 1 / 2 )  - 1) = , 

i ra  

= 

Y0 = " q ~ ,  a = 

The value of w(xo, yo) at the point where it reaches a maximum is 

1 y [ l _ e x p [ _ ( x - x o ) 2 + y 2  
~r ( x -  xo)2 + y 2 6A ]}'  

?rv/~ A3/2 _-- 25.54A3/2. 
2exp ( - 1 / 2 )  - 1 

1 1 0.0372 
wmax = 3 ~ ' v ~  A 3/----~ = A3/----T" 

The position of the maximum r  Yl) is specified by the equalities xa = x0 and yl =/3y0, where the value 
of/3 (/3 # 0) is obtained from the equation 1 +/32 = exp (/32/2), where/3 = 1.585. The value of ~b(z, y) at this 
point is 

1 em~x = /37rx/.~(1 - exp (-/32/2)) - 0.0829x/A 

Along with the s t ream function r in a coordinate system in which the fluid is at rest at infinity, it is 
possible to consider the s t ream function ~ related to r by �9 = - (1 /3)x0 y + r  This function describes the flow 
in a coordinate system moving together with the vortex. In this system, the boundary ~(x, y) = 0 divides the 
flow plane into two regions: an outer region, in which the streamlines go from infinity to infinity, and an inner 
region, in which the streamlines are closed. It is easy to see that this boundary is a circle (x - x0) 2 + y2 _~ a 2, 
where the radius of the circle a =/31y0 (/31 ~ 0) is determined by the equation 

(2exp(1 /2)  -- 1)/32 -- 1 -exp(--/312/2), fl, = 2.02, a -- 3.50v/A. 

In this coordinate system, the position of @(x2, y2) is specified by the equalities x2 = x0 and y2 =/32y0, where 
/32 (/32 ~ 0) is obtained from the equation 

1 + (2 exp ( -  1/2) - 1)/3 2 = (1 +/32) exp (-/322/2) (/32 = 1). 

One might expect that  the orders of magnitudes obtained in the solution of the model problem coincide 
with the orders of magnitudes that  must  be obtained in the solution of the initial problem, at least for A ~ 0. 
Assuming that  this is true, we introduce new variables and required functions by the equalities 

----- )~-l/2(X - -  ~--1~0), 7.] = . ~ - l / 2 y ,  ~0 = )~X0, W = ~-312W.(~, '1),  r ----- ~-1 /2r  
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After this substi tution, system (10), (11) 
omitted):  

02w 02w 1 _ Ow 
o 2 + + + 

0~r 02r A_3/2 + = # = " 

The boundary conditions and normalization take the form 

w = r  as 7 ]=0 ;  w ~ O ,  r  as 
t 3 0  C O  

f f 
- -oo  0 

takes the following form (the asterisks at w.(~, 7]) and r ,7) are 

1 Ow ra t'ar 3 )  r o,7 (25) 

(26) 

~2 + 7]2 __4 0~; 
(27) 

In the new variables, all characteristic quantities - -  the maxima w and r  the quantity 7]0 = 
A-1/2y0 which is the radius of the vortex, and ~0 = Ax0 - -  remain finite as A ---* 0. The  parameter # = A -3/2, 
which enters Eq. (25), plays the role of the Reynolds number  in the problem considered. 

We set r = �9 + (1/3)~07]. With  this substitution, the boundary conditions for kl/at infinity take the 
form 

1 
~ - J 0 ,  ~ - - * 0  as ~2+72__,c~. 

This subst i tut ion corresponds to conversion to a coordinate system attached to the  vortex, and the value of 
~0 is determined from the condition that  the maximum w is on the curve ~ = 0. 

5. P a s s a g e  to  t h e  L i m i t  A ~ 0 ( " V a n i s h i n g  Viscos i ty" ) .  The approximate  solution obtained 
above suggests that  in the new variables, as A ~ 0 (accordingly, /z --* c~), the  solution tends to a certain 
limiting solution. Under this assumption,  it follows from (25) that  in the limit,/~ --+ oo the relation w = fl(t~) 
holds but  the form of the functional dependence f~(@) remains uncertain. 

In the required flow, the streamline ~ = 0 divides the flow region into two regions: an outer region, in 
which the streamlines go from infinity to infinity, and an inner region (the a tmosphere  of the vortex pair), in 
which the streamlines are closed. By virtue of the boundary condition for w at infinity, it follows from (27) 
that  in the outer region f~ - 0 in the limit. The form of f l (~)  in the inner region is to be determined. 

A similar problem was considered in [6] for a turbulent vortex pair (and a vortex ring). We integrate 
Eq. (25) over a region with the boundary defined by a certain closed streamline. It is easy to verify that the 
right side identically vanishes, and, as a result, for any #, we have the equality 

Here dl is an element of the length of the streamline and rt is a unit normal to streamline. 
Passing to the limit/z --~ oo and taking into account that  f~ --~ f~(kI/), f rom (28) we obtain 

= 1/3r( ) + 2/3S(q/)fl01/), (29) 

where S(q2) = I f  d~ d7] is the area of the region bounded by the streamline and r(@) = f / f~d~ dT] is the 
�9 d d d d 

circulation on the streamline; here integration is performed over the region defined by the closed streamline. 
Thus,  in the limit bt ~ or the determination of the vortex pair pat tern is reduced to the problem of 

sewing together [6] the potential  inviscid flow (in the outer region) and the vortex (in inner region) subject 
to the condition of continuity of �9 and V@ on the boundary. The form of the  funct ion f/(qJ) in this case is 
given by the ordinary (with respect to the variable @) differential equation (29). 

It can be shown that  the assumption of botmdedness of the limiting solut ion leads to its continuity, 
and, hence, Eq. (29) should be supplemented by the boundary condition f~(0) = 0. 

A numerical solution of the  formulated problem was obtained together wi th  L. Ya. Rybak. In the 
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limiting case /~ --+ or it is considerably simpler than the initial problem and gives the following results. 
Figure 1 shows the level lines of the stream function. The arrow denotes the curve ~ = 0. The difference 
in values between two neighboring curves is constant (/kk~ = 0.05). The maximum value ~max = 0.0513 is 
reached on the curve ( = 0 at 77o = 2.395. The ratio of the semiaxes is b /a  = 1.057, where b = 4.996 and 
a = 4.727. Figure 2 shows the distribution of q~ and fl, and the vertical velocity component r on the curve 

= 0 versus q in a fixed reference system. In this system, the vortex moves with a velocity ~0/3, where 
~0 = 0.0378. The velocity and vortex momentum per unit length of the vortex pair can be written as 

F 
U = k l ~ ,  2j = k2rR, 

where kl = 0.070, k2 = 0.972, and R is half the distance between the centers of the vortex lines. 
It should be noted that  in the model considered, the calculation of the vorticity and velocity field in 

the limiting case of vanishing viscosity does not contain any empirical constant. The results are uniquely 
determined under the assumption that the turbulent viscosity does not depend on space coordinates. There 
are, however, qualitative experimental evidence and theoretical considerations that indicate that the turbulent 
viscosity is actually not constant over the volume of the vortex but  decreases with approach to the cores of 
the vortex pair because of suppression of turbulence in the vortex core [2, 3, 5]. Such behavior of turbulent 
viscosity follows from the behavior of an additive transferred by a vortex ring [9]. However, at present, there 
are no experimental data, reliable model, or well-founded theoretical considerations that permit the spatial 
structure of this quantity to be adequately determined. 

The value of a can be measured experimentally, and for large values of #, it is asymptotically related 
to the calculated quantities by 

q0 63.5 

~o 
6. C o m p a r i s o n  w i t h  E x p e r i m e n t s .  From formulas (7) and the calculations performed it follows 

that the maximum vertical velocity Umax is reached practically on the axis of the vortex pair and, according 
to self-similarity, it varies with distance as 

Um:,,= ~,(z, lz) ~i3, 

where u.  is the value of this quantity at the point z. > zs (z. is the distance from the virtual origin of the 
vortex pair), which can be  any point in the region where the self-similar regime is assumed. We set I = z - z,. 
Then, the relation ( u . / ( U m , x )  3/2 - 1 ) / l  = const should hold. 

The experimental results of [2] agree well with the self-similar solution for u.  = 6 m/see and z. = 613 m 
(the data  denoted in Fig. 11 of [2] by squares covers the maximum range of downstream distances). 
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From the aforesaid, the maximum velocity is related to the distance by 

U~ax = WoQ~2oU,,,l[1 + ~12~oaQ(llb)] 2/3, (30) 

where b is the wing span, Q = P/2pWoZb 2, u,n = maxr is the maximum value of this quantity on the curve 
= 0, and I is the distance reckoned downstream from the point located at 40-50 wing spans from the moving 

body in the z direction. In this formula, all quantities, except for a, are determined from the formulation and 
solution of the self-similar problem. The value of a can be measured experimentally. However, we were unable 
to find literature values for this quantity. An analogy to vortex rings and some additional considerations 
suggest that the values of a are in the range 10-1-10 -2. As noted above, a depends on the conditions of 
formation of vortex lines. In particular, attempts to decrease the vortex-line intensity by mounting antivortex 
generators of various types on wings can influence, from the viewpoint of the model considered, only the value 
of c~. The calculation performed within the limit of vanishing viscosity gives ~72Um = 0.28 and r/2~0 = 0.22 
and formula (30) allows one to evaluate the maximum velocity in the vortex wake. 

A comparison of the flow structure found numerically with the one observed in experiments is impossible 
because of the lack of measurement results in the wake far region. If the structure obtained at rather long 
distances is extrapolated to the wake far region, considerable disagreement with the measurement results 
is observed: the calculated vorticity profile is smeared; the maximum vertical velocity is reached practically 
on the axis of the vortex pair, and it is considerably smaller than the one observed in experiments. This 
disagreement is apparently caused by the above-mentioned neglect of the decreased turbulent viscosity in the 
vortex core. It is possible that allowance for this circumstance by selection of a more complex model will allow 
one to eliminate the indicated disagreement and to approach the calculated values in (30) to experimental 
results. It should be noted, however, that in real situations, atmospheric stratification, which almost always 
takes place, has a significant influence on the evolution of the vortex pair and can lead to substantial departure 
from self-similarity. 

Conclus ion.  The main result from the approach used in the present paper is as follows: the turbulent 
vortex pair formed past a moving heavy body is described as a first approximation by the self-similar solution 
of the corresponding equations beginning with a certain distance from the body and as long as the turbulent 
viscosity far exceeds the molecular viscosity. In real situations, this description is likely valid at distances about 
several kilometers downstream from the moving body. Self-similarity determines the position and intensity 
of vortex lines, and, thus, it becomes possible to evaluate the hazard to aircraft falling in the region of wake 
vortices. 

The form of self-similarity, provided that molecular viscosity can be ignored, does not depend on the 
selection of a particular model for describing turbulent fluid flow. In any adequate model of any high level in 
the approximation considered, the law of conservation of vortex momentum per unit length should be fulfilled 
and invariant solutions with respect to the extension group [10] that correspond to the self-similarity obtained 
in the present paper should exist. Therefore, use of models of higher levels to determine the vortex-line pattern 
and the velocity field do not influence the form of self-similarity. At present, however, because of difficulties 
in conducting corresponding experiments, there are no fairly full and reliable measurements in the wake far 
region that can validate a particular model of high order. For this reason, in the present paper, we used a 
simplified model of turbulent fluid flow. At the same time, in view of the disagreement between the calculated 
vorticity-distribution pattern and experimental results, further studies in this direction are required. 
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